1	Brain activations time locked to slow wave-coupled sleep spindles correlates with intellectual abilities
2	
3	Baena, Daniel,ª Fang, Zhuo, ^ь Ray, Laura B., ^ь Owen, Adrian M., ^{d,e} & Fogel, Stuart M. ^{a,b,c,d}
4	
5	^a Sleep Unit, University of Ottawa Institute of Mental Health Research at The Royal, Ottawa, Canada
6	^b School of Psychology, University of Ottawa, Ottawa, Canada
7	^c University of Ottawa Brain & Mind Research Institute, Ottawa, Canada
8	^d The Brain & Mind Institute, Western University, London, Canada
9	^e Department of Physiology and Pharmacology and Department of Psychology, Western University,
10	London, Canada
11	
12	
13	Corresponding Author:
14	Dr. Stuart M. Fogel
15	Associate Professor
16	School of Psychology
17	University of Ottawa
18	Ottawa, Ontario K1N 6N5
19	sfogel@uottawa.ca

Abstract

21	Sleep spindles (SP) are one of the few known electrophysiological neuronal biomarkers of interindividual
22	differences in cognitive abilities and aptitudes. Recent simultaneous EEG-fMRI studies suggest that the
23	magnitude of the activation of brain regions recruited during spontaneous spindle events is specifically
24	related to Reasoning abilities. However, it is not known if the relationship with cognitive abilities differs
25	between uncoupled spindles, uncoupled slow waves (SW) and coupled SW-SP complexes, nor have
26	the functional neuroanatomical substrates that support this relationship been identified. Here we
27	investigated the functional significance of activation of brain areas recruited during SW-coupled
28	spindles, uncoupled spindles, and uncoupled slow waves. We hypothesize that brain activations time
29	locked to SW-coupled spindle complexes will be primarily associated to Reasoning abilities, especially
30	in subcortical areas. Our results provide direct evidence that the relationship between Reasoning
31	abilities and sleep spindles depends on spindle coupling status. Specifically, we found that the putamen
32	and thalamus, recruited during coupled SW-SP events were positively correlated with Reasoning
33	abilities. In addition, we found a negative association between Reasoning abilities and hippocampal
34	activation time-locked to uncoupled SWs that might reflect a refractory mechanism in the absence of
35	new, intensive hippocampal-dependent memory processing.

36

37 Keywords: sleep, spindles, cognitive abilities, simultaneous EEG-fMRI, NREM

38	Introduction
39	The microarchitectural features of sleep are some of the few known electrophysiological
40	neuronal biomarkers of interindividual differences in cognitive abilities (Schabus et al. 2006; Ujma et al.
41	2015; Fang et al. 2017). Sleep spindles were the first sleep feature to be identified (for review, see:
42	(Fogel and Smith 2011), and continue to be the focus of ongoing investigations, primarily in an effort to
43	better understand the specificity of this relationship, and associated the neural correlates/substrates.
44	The characteristics of spindles are trait-like; they are consistent from night-to-night within an individual,
45	yet they differ greatly between individuals (Silverstein and Levy 1976; Gaillard and Blois 1981; de
46	Gennaro et al. 2005). Spindles have been referred to as an "electrophysiological fingerprint", yet, the
47	functional significance of this unique signature remains to be fully understood. It is clear however, from
48	over 20 years of the most recent research on the spindle, that they are critically important for memory
49	processing and intimately related to intellectual function. The interindividual differences in spindle
50	characteristics have been found to be related to the capacity for reasoning. Reasoning involves cognitive
51	abilities required identify complex patterns and relationships, the use of logic, planning and skills that
52	are required to solve novel problems (Bódizs et al. 2005; Schabus et al. 2006; Fogel et al. 2007; Bódizs
53	et al. 2008; Nader and Smith 2009; Fang et al. 2017). Reasoning abilities are analogous to cognitive
54	abilities that support "fluid intelligence" (Cattell 1963). See methods for a detailed description of
55	Reasoning abilities and the testing approach. Furthermore, when accounting for the overlap between

56	various cognitive subdomains (Fogel et al. 2007; Fang et al. 2017), spindle characteristics are not
57	associated with verbal cognitive abilities, <i>i.e.</i> , "crystalized intelligence", which reflect the ability to use
58	and remember facts, figures, events, places, etc. Thus, supporting the idea that spindles are an
59	electrophysiological biomarker of specific individual differences in cognitive strengths and weaknesses;
60	particularly for the capacity to solve problems through logic and reasoning.
61	The brain areas recruited during spontaneous spindle events have been identified using
62	simultaneous EEG and fMRI. These areas include the thalamus and the temporal lobe (Laufs et al.
63	2007; Schabus et al. 2007; Tyvaert et al. 2008; Andrade et al. 2011; Caporro et al. 2012), as well as
64	activation of the cingulate cortex and motor areas (Andrade et al. 2011; Caporro et al. 2012).
65	Interestingly, activation of areas related to memory and cognitive function like the putamen (Tyvaert et
66	al. 2008; Caporro et al. 2012), basal ganglia (Tyvaert et al. 2008; Caporro et al. 2012; S.M. Fogel et al.
67	2017) and hippocampus (Schabus et al. 2007) are also activated time-locked to spindle events.
68	However, spindles do not always occur in isolation. Rather, they are often part of <i>slow wave</i> –
69	spindle - hippocampal ripple complexes, whereby ripples are nested in the excitatory troughs of
70	spindles, and spindles are nested in the excitatory troughs ("up-states") of slow waves (Helfrich et al.
71	2019). Slow wave – spindle (SW-SP) coupling is associated with memory consolidation both in young
72	and older adults and is considered an index of neural plasticity (Maingret et al. 2016; Bergmann and
73	Born 2018; Helfrich et al. 2018; Ngo et al. 2020). Recent results from our group have identified

74	dissociable patterns of brain activation when comparing slow wave-coupled spindles, uncoupled
75	spindles, and, uncoupled slow waves (Baena et al. 2022). Critically, activation of the putamen was
76	observed only during slow wave-coupled spindles, and recruitment of the hippocampus was observed
77	only during isolated slow waves and coupled spindles, but not during isolated spindles. Thus, suggesting
78	that spindles may not be the only electrophysiological index of cognitive abilities. However, this
79	possibility remains to be directly investigated, and is the main aim of the current study.
80	Recent simultaneous EEG-fMRI studies aimed to assess the relationship between brain activity
81	time locked to spindle events and cognitive abilities. A recent study by our group (Fang et al. 2019)
82	investigated the relationship between brain activity time-locked to spindle events and interindividual
83	differences in cognitive abilities for Short-Term Memory, verbal intelligence, and fluid intelligence.
84	Remarkably, only fluid intelligence was associated with cerebral activations occurring during spindles
85	events. Specifically, brain activation of the thalamus, prefrontal cortex (PFC), putamen, cerebellum and
86	the precuneus was associated with fluid intelligence, but not verbal intelligence or Short-Term Memory
87	abilities. In addition, the strength of functional connectivity within the cortical-striatal and thalamo-cortical
88	networks was associated with fluid intelligence, but not with verbal intelligence or Short-Term Memory
89	abilities (Fang et al. 2020). Taken together, these findings suggest that spindles are not only uniquely
90	related to fluid intelligence, but also, that the magnitude of the activation of brain regions recruited during
91	spontaneous spindle events, and the strength of the related functional communication between regions

92 is specifically related to fluid intelligence. Thus, spindles are a physiological index of fluid intelligence,

and an electrophysiological marker of the functional-neuroanatomical substrates which support
 intellectual function.

95 We have recently identified unique functional brain activations that are specific to SW-SP 96 complexes (Baena et al. 2022). Trait-like aspects of spindles are considered biological markers of 97 interindividual differences in intellectual abilities. However, we did not previously explore how brain 98 activations associated with SW-SP coupling relates to intellectual abilities. Thus, the functional 99 significance of activations time-locked to coupled SW-spindle complexes in comparison to activations 100 specific to uncoupled spindles and uncoupled slow waves remains to be explored. In line with previous 101 studies, we expect to observe a relationship between spindles and Reasoning abilities (*i.e.*, fluid 102 intelligence). We hypothesize that brain activations time locked to SW-coupled spindle complexes will 103 be primarily associated to fluid intelligence, especially in subcortical areas important for planning, 104 problem-solving, reasoning, and strategy such as the striatum, hippocampus and the frontal lobe, as 105 well as areas important for spindle generation, such as the thalamus.

106

Methods

107 Participants

All participants were initially screened for irregular sleep schedules (bedtime outside the hours of
 ~22:00-24:00 h, wake time outside the hours of 07:00-09:00 h), left-handedness, shift work, and the use

110	of medications known to affect sleep. Participants were also not eligible to participate if they considered
111	themselves a smoker, consumed >1-2 caffeinated beverages/day, consumed >7 alcoholic
112	beverages/week, or had a history of chronic pain, seizures or head injury. Participants completed the
113	Beck Depression (Beck, Steer, et al. 1988) and Anxiety Inventories (Beck, Epstein, et al. 1988) as well
114	as the Sleep Disorders Questionnaire (Douglass et al. 1994) to exclude participants with signs of
115	depression or anxiety and ensure normal sleep-wake patterns. Three days prior to, and throughout
116	participation in the study, participants were required to refrain from recreational drug use and limit
117	caffeine (to no more than 1 beverage in the AM) and alcohol intake. Actigraphy and sleep logs were
118	used to confirm the participants' sleep and activity cycles throughout the study. A total of 35 participants
119	were recruited, seven participants did not meet study inclusion criteria. In total, N = 28 participants
120	(mean age 24, 16 females) were included in the final data analyses.
121	Ethics statement
122	All study procedures and methods adhered to the Declaration of Helsinki and were approved by
123	the Western University Health Science research ethics board. All participants were given a letter with
124	details of the study, provided informed consent, and were financially compensated for their participation.
125	Procedures
126	All participants who mat the study inclusion criteric underwant on crientation accessor where they
	All participants who met the study inclusion criteria underwent an orientation session where they

128	tests (see below), a sleep diary and an activity monitor to verify their sleep-wake cycle (Figure 1). After
129	the orientation session, all participants were required to complete the CBS test battery (Hampshire et
130	al. 2012). It takes around 30-45 minutes to complete the CBS tests. A minimum of one week following
131	the orientation session, participants completed the EEG-fMRI sleep recording night. Participants arrived
132	at the sleep laboratory on the recording night at approximately 20:00 h. EEG equipment was installed
133	and configured prior to scanning procedures beginning at 21:00 h. Localizer scans, a T1 structural scan,
134	and an 8-minute eyes-closed awake resting-state scan were completed. To confirm that participants
135	remained awake in the MRI scanner prior to the sleep session, EEG was acquired during the initial
136	scanning procedures. The EEG-fMRI sleep session began at about 22:00 h, within the range of the
137	participants' habitual bedtime, and ended no later than midnight (24:00 h), or if participants terminated
138	the session early, e.g., due to inability to sleep or discomfort. Participants slept the rest of the night in
139	the nearby sleep laboratory after the EEG-fMRI sleep session. Only the sleep EEG acquired in the
140	scanner was used in the data analysis.

Figure 1 insert

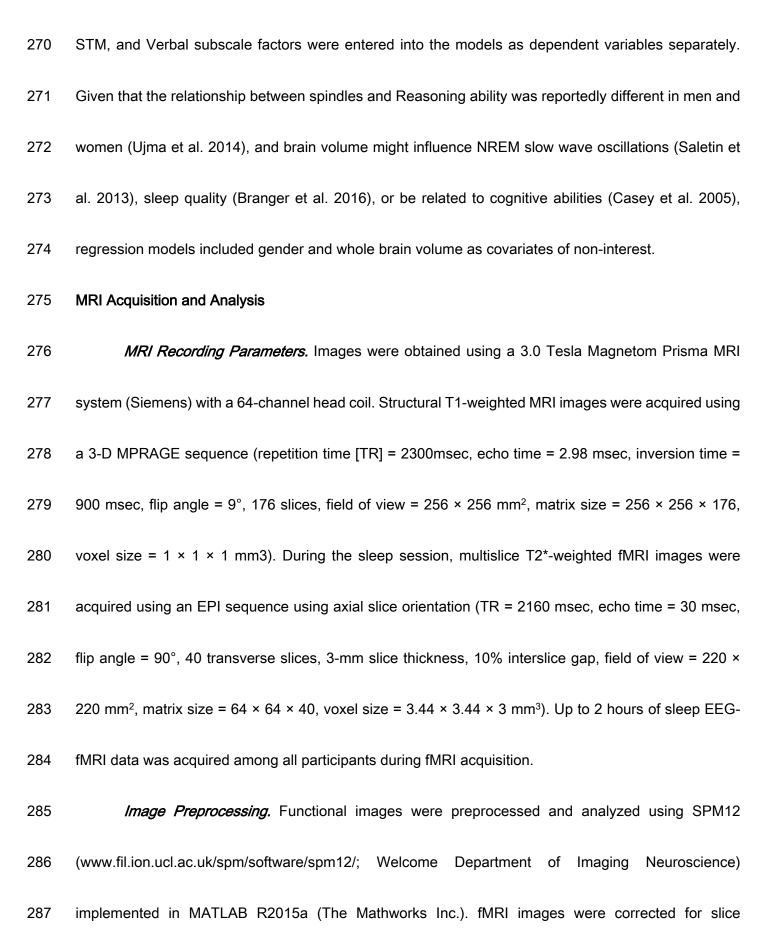
```
142 Intelligence testing
```

The CBS platform is a web-based test battery, which has previously been used in both largescale population-sized (Hampshire et al. 2012; Wild et al. 2018) and smaller-scale studies (Fang et al.

145	2017; Laventure et al. 2018; Brewer-Deluce et al.). CBS tests have a number of advantages over other
146	tests of cognition, including ease of administration and the fact that the neural correlates of each subtest
147	have been investigated using functional neuroimaging (Hampshire et al. 2012). The CBS trials includes
148	12 cognitive tests that measure a broad range of cognitive abilities including reasoning, problem solving,
149	planning, attention, and memory. CBS trials are adapted from well-known, well-established paradigms
150	from the cognitive neuroscience literature that test a wide range of aspects of cognition. CBS subscales
151	(<i>i.e.</i> , Verbal, Reasoning and Short-Term Memory) are derived quantitatively from a data-driven
152	approach using factor analysis, conducted on a large population (>44,000 individuals) from a previous
153	study (Hampshire et al. 2012) in contrast to conventional tests which are based solely on the face-
154	validity of the constructs of interest. The Reasoning factor is best described in terms of performance on
155	five classical tests adapted for online testing from the cognitive and neuropsychological literature,
156	including deductive reasoning (Cattell 1940), spatial rotation (Silverman et al. 2000), feature match
157	(Treisman and Gelade 1980), spatial planning (Shallice 1982), and polygons (Folstein et al. 1975). STM
158	is best described in terms of four tests, including visuospatial working memory (Inoue and Matsuzawa
159	2007), spatial span (Corsi 1973), paired associates (Gould et al. 2006), and self-ordered search (Collins
160	et al. 1998). Finally, verbal ability is best captured by performance on three tests, including verbal
161	reasoning (Baddeley 1968), color-word remapping (Stroop 1935), and digit span (Wechsler 1981). Raw
162	scores from each of the 12 subtests were normalized using the mean and standard deviation obtained

163	from a large, young population (N = 44,600; age 20–35 years) of participants who completed the CBS
164	Trials (Hampshire et al. 2012). Each subtest was then weighted according to the factor loadings from
165	Hampshire et al. (2012). Finally, the respective sub-tests were averaged to create the Reasoning, STM,
166	and Verbal sub-scales and transformed to standard scores. Importantly, and particularly for the aims of
167	the current study, sleep spindles have been found to be correlated specifically with Reasoning ability
168	scores derived from the CBS test battery, using the same testing approach used here (Fang et al. 2017).
169	In addition, the neural correlates of each factor have been investigated previously using neuroimaging
170	(Hampshire et al. 2012), and have been shown to depend on distinct neural correlates. Thus, we chose
171	the CBS platform to investigate the neural correlates between sleep spindles and cognitive abilities.
172	CBS Score Calculation
172 173	CBS Score Calculation Raw scores from each of the 12 subtests were normalized using the mean and standard
173	Raw scores from each of the 12 subtests were normalized using the mean and standard
173 174	Raw scores from each of the 12 subtests were normalized using the mean and standard deviation obtained from a large, young population (N = 44,600; age 20–35 years) of participants who
173 174 175	Raw scores from each of the 12 subtests were normalized using the mean and standard deviation obtained from a large, young population (N = 44,600; age 20–35 years) of participants who completed the CBS Trials (Hampshire et al. 2012). Each subtest was then weighted according to the
173 174 175 176	Raw scores from each of the 12 subtests were normalized using the mean and standard deviation obtained from a large, young population (N = 44,600; age 20–35 years) of participants who completed the CBS Trials (Hampshire et al. 2012). Each subtest was then weighted according to the factor loadings from Hampshire et al. (2012). Finally, the respective sub-tests were averaged to create
173 174 175 176 177	Raw scores from each of the 12 subtests were normalized using the mean and standard deviation obtained from a large, young population (N = 44,600; age 20–35 years) of participants who completed the CBS Trials (Hampshire et al. 2012). Each subtest was then weighted according to the factor loadings from Hampshire et al. (2012). Finally, the respective sub-tests were averaged to create the Reasoning, STM, and Verbal sub-scales and transformed to standard scores, so that test scores

181	Adult Intelligence Scale (Wechsler 1981). The descriptive statistics of each subtest are shown in Table
182	1.
183	Table 1.
184	
185	
186	Polysomnographic Acquisition and Analysis
187	Polysomnographic Recording Parameters. Polysomnographic (PSG) recordings were obtained using a
188	64-channel magnetic resonance (MR)-compatible EEG cap, which included one electrocardiogram
189	(ECG) lead (Braincap MR, Easycap) and 64-channels of EEG recorded via two MR-compatible 32-
190	channel amplifiers (Brainamp MR Plus, Brain Products GmbH). EEG recordings were referenced to FCz
191	and digitized at 5000 samples per second with a 500-nV resolution. Three additional bipolar ECG
192	recordings were taken using a MR-compatible amplifier (Brainamp ExG MR, Brain Products GmbH) to
193	account for the limited visualization of the r-peak of the QRS complex when using a single ECG lead
194	included in the EEG cap. In order to reduce ballistocardiographic (BCG) artifacts by up to 40% (Mullinger
195	et al. 2011), participants were positioned in the MRI scanner so that they were shifted away from the
196	isocenter of the magnetic field by 40 mm, making BCG correction more straightforward. Data were
197	analog filtered using a 500 Hz band-limiter low-pass filter and a 0.0159 Hz high-pass filter with a 10-sec


198	time constant. Data was recorded with Brain Products Recorder Software, Version 1.x and transferred
199	to the recording computer via fiber-optic cable and hardware synchronized to the scanner clock using
200	the Brain Products "Sync Box" (Brain Products GmbH). As recommended in the literature (Mulert and
201	Lemieux 2010), the MRI sequence parameters were selected to ensure that the gradient artifact would
202	be time stable, and that the lowest harmonic of the gradient artifact (18.52 Hz) would occur at the highest
203	possible frequency and above the spindle band (11–16 Hz). Thus, the MR scan repetition time was set
204	to 2160 msec, matching a common multiple of the EEG sample time (0.2 msec), the product of the
205	scanner clock precision (0.1 μ sec), and the number of slices (40) used.
206	EEG Preprocessing. EEG scanner artifacts were removed in several steps. First, an adaptative
207	average template subtraction method (Allen et al. 2000) implemented in Brain Products Analyzer
208	Software, Version 2.x was used and data was downsampled to 250 Hz. Next, r-peaks in the ECG were
209	detected semi-automatically. Each r-peak was visually verified and, when necessary, manually adjusted
210	to correct both false-positive and false-negative r-peak detections, to ensure an optimal BCG correction.
211	Next, adaptive template subtraction (Allen et al. 1998) was used to remove BCG artifacts time-locked
212	to the r-peak of the QRS complex. After MRI-related artifact correction, data was visually inspected and
213	amplitude of the residual artifacts time-locked to the r-peaks were examined. An independent
214	component-analysis-based approach (Srivastava et al. 2005; Mantini et al. 2007) was applied to remove

216	exceeded 3 μ V during the QRS complex (<i>e.g.</i> , 0–600 msec). Lastly, the EEG was re-referenced to the
217	averaged mastoids and a low-pass filter of 60 Hz was applied. Following preprocessing, sleep stages
218	were scored in accordance with standard criteria (Iber et al. 2007) using the "VisEd Marks" toolbox
219	(https://github.com/jadesjardins/vised_marks) for EEGLAB (Delorme and Makeig 2004).
220	Slow Wave Detection. Slow waves were automatically detected from Fz, Cz and Pz during
221	movement artifact-free NREM sleep (N2 and SWS) via a period amplitude analysis detection algorithm
222	(https://github.com/stuartfogel/Period-Amplitude-Analysis) based on methods previously described
223	(Bersagliere and Achermann 2010), adapted for EEGlab (Delorme and Makeig 2004) and written for
224	MATLAB R2019b (The MathWorks Inc.). First, the EEG signal was band-pass filtered (32nd order
225	Chebyshev Type 2 low-pass filter, 80 dB stopband attenuation, 2.15 Hz frequency cut-off; 64th-order
226	Chebyshev type 2 high-pass filter, 80 dB stopband attenuation, 0.46 Hz frequency cut-off). The cut-off
227	frequencies were selected to achieve minimal attenuation in the band of interest while keeping a good
228	attenuation of the neighboring frequencies. The filters were applied in the forward and reverse directions
229	to achieve zero-phase distortion. Next, half-waves were determined as negative or positive deflections
230	between two consecutive zero crossings in the band-pass filtered signal for frequencies between 0.5
231	and 2 Hz. Only adjacent half-waves with a peak-to-peak amplitude higher than 75 μV and longer than
232	0.25 seconds were considered for the analysis. The latency of the negative peak of each slow wave
233	was extracted for further analyses.

Page 14 of 49

234	Spindle Detection. Sleep spindles were automatically detected from Fz, Cz, and Pz during
235	movement artifact-free NREM sleep (N2 and SWS) using an established (Fogel et al. 2014; Albouy et
236	al. 2015; Fang et al. 2017; Fang et al. 2019) and validated (Ray et al. 2015) method employing EEGlab-
237	compatible (Delorme and Makeig 2004) software (https://github.com/stuartfogel/detect_spindles) written
238	for MATLAB R2019b (The MathWorks Inc.). Detailed processing steps, procedures, and method
239	validation are reported elsewhere (Ray et al. 2015). Briefly, the spindle data were extracted from
240	movement artifact-free, NREM epochs. The detection method (Ray et al. 2015) used a complex
241	demodulation transformation of the EEG signal with a bandwidth of 5 Hz centered about a carrier
242	frequency of 13.5 Hz (<i>i.e.</i> , 11–16 Hz). The method employs an adaptive amplitude threshold at the 99th
243	percentile on the transformed signal. Spindles were visually verified by a single expert scorer after
244	automatic detection. The variables of interest extracted from this method include spindle amplitude,
245	duration, and density (number of spindles/minute of NREM sleep) for each participant. From the spindle
246	data, the onset and peak of each spindle event was extracted for further analyses.
247	Slow Wave-Spindle Coupling. Using the slow wave negative peak latencies and the spindle peak
248	latencies from Fz, Cz, and Pz, we performed coupling detection procedures using the approach
249	developed by Mölle and colleagues (Mölle et al. 2011) employing EEGlab-compatible (Delorme and
250	Makeig 2004) software written for MATLAB R2019b (The MathWorks Inc.). The spindles were then
251	marked as coupled SW-SP complexes when the spindle peak onset occurred within a 4-second time
	1,

252	window built around the slow wave negative peak. Due to the low number of coupled spindle events on
253	each individual channel, detections from Fz, Cz and Pz were used in the final analyses. In the same
254	way, it was not possible to further subdivide events into slow and fast spindle categories. Lag was
255	measured as the distance between the slow wave negative peak and the spindle peak latency. Coupling
256	strength was measured as the lag variance for each participant. Paired sampled t-tests were used for
257	the comparison of the SW-SP complexes, measured in time bins of 200ms along the 4 s window.
258	Percentage of coupled spindles relative to total number of spindles was calculated alongside the
259	percentage of coupled spindles relative to the total number of slow waves detected.
260	Additionally, the phase of the bandpass-filtered slow-wave signal in radians at the spindle onset
261	location was computed. The mean direction of the phase angles for all coupled spindle events were
262	determined using the CircStat toolbox (Berens 2009). Preferred phase of SW-SP coupling for each
263	participant was computed by averaging all individual event preferred phases. Finally, we performed
264	uniformity tests (Rayleigh test) and uniformity using positive slow wave peaks as the predefined mean
265	direction (V-test).
266	Relationship Between Sleep Spindle EEG Characteristics and Cognitive Abilities
267	Linear regression analyses were used to examine the effects of sleep spindles on cognitive
268	abilities (Reasoning, STM, and Verbal) assessed by the CBS test battery. Sleep spindle duration,
269	amplitude, and density were entered into each model as independent variables together; Reasoning,

288	acquisition time differences and realigned to correct head motion using rigid body transformation. A
289	mean realigned image was then created from the resulting images. The structural T1 image was
290	coregistered to this mean functional image using a rigid body transformation optimized to maximize the
291	normalized mutual information between the two images. Coregistration parameters were then applied
292	to the realigned BOLD time series. The coregistered structural images were segmented into gray matter,
293	white matter, and cerebrospinal fluid. An average participant-based template was created using
294	DARTEL in SPM12. All functional and anatomical images were spatially normalized using the resulting
295	template, which was generated from the structural scans. Finally, spatial smoothing was applied on all
296	functional images (Gaussian kernel, 8-mm FWHM).
297	First-Level (within-subject) GLM. The onset and duration for each coupled SW-SP, uncoupled
297 298	<i>First-Level (within-subject) GLM.</i> The onset and duration for each coupled SW-SP, uncoupled spindles and slow wave event were identified from the EEG data and considered events of interest.
298	spindles and slow wave event were identified from the EEG data and considered events of interest.
298 299	spindles and slow wave event were identified from the EEG data and considered events of interest. Friston-24 movement parameters (Friston et al. 1996), the mean white matter intensity, and the mean
298 299 300	spindles and slow wave event were identified from the EEG data and considered events of interest. Friston-24 movement parameters (Friston et al. 1996), the mean white matter intensity, and the mean cerebral spinal fluid intensity for each participant were entered into the model as nuisance variables. To
298 299 300 301	spindles and slow wave event were identified from the EEG data and considered events of interest. Friston-24 movement parameters (Friston et al. 1996), the mean white matter intensity, and the mean cerebral spinal fluid intensity for each participant were entered into the model as nuisance variables. To remove low frequency drifts from the time series, a high-pass filter with a cut-off at 128 seconds was
298 299 300 301 302	spindles and slow wave event were identified from the EEG data and considered events of interest. Friston-24 movement parameters (Friston et al. 1996), the mean white matter intensity, and the mean cerebral spinal fluid intensity for each participant were entered into the model as nuisance variables. To remove low frequency drifts from the time series, a high-pass filter with a cut-off at 128 seconds was used. Brain activations time-locked to each event type (<i>e.g.</i> , spindle, SW and coupled SW-SP events)

306	to account for the variability in the latency of the peak response and variability in the duration of the
307	peak response. Consequently, this approach yields an "informed basis set", generating three contrast t-
308	maps, one for the canonical HRF, one for the temporal derivative, and one for the dispersion derivative,
309	for each participant.
310	ROIs selection
311	Based on the spindle-related brain activation results consistently found in previous studies and
312	to directly address the main aims of the current study, seven pre-defined anatomical ROIs were selected
313	from the previous literature (Schabus et al. 2007; Tyvaert et al. 2008; Andrade et al. 2011; Caporro et
314	al. 2012; Sandman et al. 2014; S. Fogel et al. 2017; Fang et al. 2020; Fang et al. 2021; Baena et al.
315	2022), and built using WFUpickatlas AAL template including bilateral putamen, bilateral thalamus,
316	bilateral hippocampus, anterior cingulate cortex (ACC), middle cingulate cortex (MCC), superior
317	prefontal cortex (SPFC), and middle frontal gyrus (MFG). In addition, it should be noted that activation
318	of the thalamus, ACC, MCC and bilateral putamen during spindle events have been found to be
319	correlated specifically with Reasoning abilities (Fang et al. 2019; Fang et al. 2020).
320	Regression analyses
321	The activation beta values in the selected ROIs were extracted for coupled spindle (SW-SP),
322	uncoupled spindle, and uncoupled slow wave contrast maps respectively using Marsbar. Next, linear
323	regression analyses were conducted to explore the relationship between CBS tests scores (<i>i.e.</i> ,

324	Reasoning, Verbal, STM) and the brain activation for each event type (<i>i.e.</i> , coupled SW-SP events,
325	uncoupled spindles, uncoupled slow waves) respectively in SPSS version 24.0 (IBM Corp., 2016). The
326	brain activation in the pre-defined ROIs was included in the model as the dependent variable. Scores of
327	the three subtests were included together in the regression model as independent variables, with the
328	whole brain gray matter volume as the covariate of no interest. Finally, follow-up direct comparisons
329	between significant partial correlation coefficients were performed between coupled SW-SP events and
330	uncoupled events using the toolbox by Lenhard & Lenhard (Lenhard and Lenhard 2014).
331	Results
332	Sleep architecture
333	All participants had more than 14 minutes of sleep during the EEG-fMRI recording session, and
334	on average, there was 45 minutes (SD = 24) of sleep in total. Average sleep latency was 7.71 minutes
335	($SD = 10$), and the average time when participants fell asleep in the scanner was at 22:22h ($SD = 26$).
336	NREM sleep data from 28 participants were included in the analyses. The average duration of NREM
337	sleep included in the analyses was 40 minutes ($SD = 19$ minutes). Sleep architecture for the sample is
338	summarized in Table 2 .
339	Table 2
340	

341 *EEG characteristics of coupled SW-SP and uncoupled spindles*

342	On average, 215 coupled spindles and 264 uncoupled spindles per participant were identified
343	and were included in the analyses. Detailed characteristics of the coupled SW-SP and uncoupled
344	spindles are summarized in Table 3. No differences between coupled SW-SP and uncoupled spindles
345	in terms of the number ($t(27) = -0.56$, $p = 0.58$) duration ($t(27) = -0.16$, $p = 0.87$) or density ($t(27) = -0.66$,
346	p = 0.51), were observed. Thus, suggesting an even distribution for each event type. Spindle amplitude
347	was significantly higher in coupled SW-SP in comparison to uncoupled spindles ($t(27) = 3.61$, $p = 0.001$),
348	suggesting that the characteristics of coupled spindles are significantly different from isolated spindles.
349	Table 3
350	
351	Inspection of the temporal distribution of spindles co-occurring within the 4 sec window around
351 352	Inspection of the temporal distribution of spindles co-occurring within the 4 sec window around the negative peak of the slow wave (Figure 2A) revealed that the percentage of coupled spindles during
352	the negative peak of the slow wave (Figure 2A) revealed that the percentage of coupled spindles during
352 353	the negative peak of the slow wave (Figure 2A) revealed that the percentage of coupled spindles during the up-to-down state ranging from -1 to 0 sec was significantly higher than the preceding interval ranging
352 353 354	the negative peak of the slow wave (Figure 2A) revealed that the percentage of coupled spindles during the up-to-down state ranging from -1 to 0 sec was significantly higher than the preceding interval ranging form -2 to -1 sec ($t(27) = -5.41$, $p < 0.001$). Likewise, the percentage of coupled spindles during the
352 353 354 355	the negative peak of the slow wave (Figure 2A) revealed that the percentage of coupled spindles during the up-to-down state ranging from -1 to 0 sec was significantly higher than the preceding interval ranging form -2 to -1 sec ($t(27) = -5.41$, $p < 0.001$). Likewise, the percentage of coupled spindles during the down-to-up state ranging from 0 to 1 sec), was also higher than the succeeding 1 to 2 sec interval ($t(27)$)
352 353 354 355 356	the negative peak of the slow wave (Figure 2A) revealed that the percentage of coupled spindles during the up-to-down state ranging from -1 to 0 sec was significantly higher than the preceding interval ranging form -2 to -1 sec ($t(27) = -5.41$, $p < 0.001$). Likewise, the percentage of coupled spindles during the down-to-up state ranging from 0 to 1 sec), was also higher than the succeeding 1 to 2 sec interval ($t(27)$ = 5.83, $p < 0.001$). Finally, the percentage of coupled spindles during the down-to-up state was

360	individual was computed (Figure 2B). Coupling of spindle events within the slow wave cycle was
361	maximal, shortly before the down-to-up state peak in 15 out of 28 participants (0°; p < 0.001, V-test).
362	Further individual-level analyses revealed a non-uniform distribution ($p < 0.05$, Rayleigh test) of the
363	preferred phases of SW-SP in 12 out of 28 participants, suggesting that spindles were coupled to slow
364	waves preferentially adjacent to, or immediately following the positive slow wave peak, during the down-
365	to-up state.
366	
367	Figure 2 insert

Relationship between coupled and uncoupled spindle EEG characteristics and cognitive abilities 368 369 Consistent with previous reports (Fang et al. 2019; Fang et al. 2020), multiple linear regression 370 analyses revealed that, taken together, Reasoning, Short-Term Memory and Verbal abilities significantly accounted for variability in spindle amplitude (F(5,22) = 3.35, $R^2 = 0.43$, p = 0.021). This effect was not 371 372 observed for duration (F(5,22) = 0.35, $R^2 = 0.07$, p = 0.867) or density (F(5,22) = 1.43, $R^2 = 0.25$, p = 0.25, 373 0.252). Inspection of the partial coefficients revealed that only Reasoning (controlling for Short-Term 374 Memory and Verbal abilities) significantly, and uniquely accounted for variability in spindle amplitude 375 (t(22) = 2.28, r = 0.44, p = 0.033).

376	When considering coupled spindles and isolated spindles separately, multiple linear regression
377	analyses revealed that, taken together, Reasoning, Short-Term Memory and Verbal abilities accounted
378	for variability in coupled spindle duration ($F(5,22) = 2.66$, $R^2 = 0.38$, $p = 0.050$), but not coupled spindle
379	amplitude ($F(5,22) = 1.54$, $R^2 = 0.26$, $p = 0.217$), or density ($F(5,22) = 1.16$, $R^2 = 0.21$, $p = 0.361$). Further
380	inspection of the partial coefficients revealed that Reasoning (controlling for Short-Term Memory and
381	Verbal abilities) did not account for variability in coupled spindle duration ($t(22) = 1.25$, $r = 0.003$, $p =$
382	0.224).
383	Reasoning, Short-Term Memory and Verbal abilities did not account for variability in uncoupled
384	spindle amplitude ($F(5,22) = 8.21$, $R^2 = 0.16$, $p = 0.550$), duration ($F(5,22) = 1.57$, $R^2 = 0.26$, $p = 0.210$)
385	nor density ($F(5,22) = 1.47$, $R^2 = 0.25$, $p = 0.240$).
385 386	nor density ($F(5,22) = 1.47$, $R^2 = 0.25$, $p = 0.240$). Cerebral activation associated with Reasoning abilities
386	Cerebral activation associated with Reasoning abilities
386 387	Cerebral activation associated with Reasoning abilities Activation of the putamen during SW-SP coupling was positively associated with Reasoning
386 387 388	Cerebral activation associated with Reasoning abilities Activation of the putamen during SW-SP coupling was positively associated with Reasoning abilities ($sr = 0.42$, $p = 0.039$; Figure 3A). This association was not observed for uncoupled spindles (sr
386 387 388 389	Cerebral activation associated with Reasoning abilities Activation of the putamen during SW-SP coupling was positively associated with Reasoning abilities ($sr = 0.42$, $p = 0.039$; Figure 3A). This association was not observed for uncoupled spindles (sr = -0.03, $p = 0.885$) or uncoupled slow waves ($sr = 0.31$, $p = 0.128$). Similarly, activation of the thalamus
386 387 388 389 390	Cerebral activation associated with Reasoning abilities Activation of the putamen during SW-SP coupling was positively associated with Reasoning abilities ($sr = 0.42$, $p = 0.039$; Figure 3A). This association was not observed for uncoupled spindles (sr = -0.03, $p = 0.885$) or uncoupled slow waves ($sr = 0.31$, $p = 0.128$). Similarly, activation of the thalamus during SW-SP coupling was correlated with Reasoning abilities ($sr = 0.41$, $p = 0.042$; Figure 3B), which

394	for SW-SP coupling (sr = -0.20, $p = 0.333$), or uncoupled spindles (sr = 0.09, $p = 0.685$) Finally,
395	Reasoning abilities were negatively associated with PFC activation in response to uncoupled spindles
396	(<i>sr = -0.54, p = 0.005;</i> Figure 3D). No such association was found for SW-SP coupling (<i>sr = 0.05, p =</i>
397	0.822) or uncoupled slow waves (sr = 0.03, $p = 0.873$). No significant associations were observed
398	between Reasoning abilities and cerebral activation in any other ROIs.
399	Follow-up comparisons between coupled SW-SP events vs. uncoupled events showed that the
400	association between activation of the putamen with Reasoning abilities during SW-SP coupled events
401	was significantly greater than during uncoupled spindles ($z = -1.92$, $p = 0.027$; Supplemental Table S1).
402	The negative association with Reasoning in the hippocampus during uncoupled slow waves events was
403	different stronger than coupled SW-SP events <i>(z = 3.11, p = 0.001; Supplemental Table S3)</i> . Additional
404	direct comparisons between partial correlation coefficients are reported in Supplementary Table S1-
405	Table S7.
406	Figure 3 insert
407	Cerebral activation associated with Verbal abilities
408	Significant associations were found between Verbal abilities and brain activations in frontal
409	regions. Specifically, activation of the ACC, MCC and PFC in response to SW-SP coupling was
410	negatively correlated with Verbal abilities ($sr = -0.50$, $p = 0.011$; $sr = -0.42$, $p = 0.036$; $sr = -0.47$, $p = 0.047$, $p = 0.0$

412	<i>sr =-0.05, p = 0.809</i>), or uncoupled spindles (<i>sr =0.31, p = 0.139; sr</i> =0.18, p = 0.388), but were positively
413	correlated with the PFC in response to uncoupled spindles ($sr = 0.423$, $p = 0.035$). Finally, negative
414	associations were observed between the Verbal abilities and MFG activation to SW-SP coupled events
415	($sr = -0.40$, $p = 0.046$) and uncoupled slow waves ($sr = -0.56$, $p = 0.003$), but not for uncoupled spindles
416	(sr = 0.05, p = 0.818).
417	Follow-up comparisons between coupled SW-SP events vs. uncoupled events showed that the
418	association between activation of the PFC with Verbal abilities during uncoupled spindles was
419	significantly greater than during coupled SW-SP events (<i>z = 3.56, p < 0.001; Supplemental Table S4</i>).
420	Additional direct comparisons between partial correlation coefficients for other related frontal areas are
421	reported in Supplementary Table S1-Table S7.
421 422	reported in Supplementary Table S1-Table S7. Cerebral activation associated with Short-Term Memory abilities
422	Cerebral activation associated with Short-Term Memory abilities
422 423	Cerebral activation associated with Short-Term Memory abilities A significant negative association was found between STM scores and MFG activation in
422 423 424	Cerebral activation associated with Short-Term Memory abilities A significant negative association was found between STM scores and MFG activation in response to uncoupled spindles ($sr = -0.41$, $p = 0.042$). No such association was found for SW-SP
422 423 424 425	Cerebral activation associated with Short-Term Memory abilities A significant negative association was found between STM scores and MFG activation in response to uncoupled spindles ($sr = -0.41$, $p = 0.042$). No such association was found for SW-SP coupled events ($sr = 0.18$, $p = 0.390$) or uncoupled slow waves ($sr = 0.28$, $p = 0.180$).
422 423 424 425 426	Cerebral activation associated with Short-Term Memory abilities A significant negative association was found between STM scores and MFG activation in response to uncoupled spindles ($sr = -0.41$, $p = 0.042$). No such association was found for SW-SP coupled events ($sr = 0.18$, $p = 0.390$) or uncoupled slow waves ($sr = 0.28$, $p = 0.180$). Follow-up comparisons between coupled SW-SP events <i>vs.</i> uncoupled events showed that the

430	In the present study, we investigated the functional significance of brain activation recruited
431	during SW-coupled spindles, uncoupled spindles, and uncoupled slow waves. Converging evidence has
432	demonstrated that spindles are one of the only, and most robust physiological indices/markers of human
433	intelligence; in particular for Fluid Intelligence and related abilities (Fogel and Smith 2011; Fang et al.
434	2019; Smith et al. 2020). Most recently, simultaneous EEG-fMRI sleep studies have enabled the
435	identification of the neural substrates and localization of the functional brain communication which
436	support this relationship (Fang et al. 2019; Fang et al. 2021). In addition, we identified the unique
437	cerebral activations specific to SW-SP coupling (Baena et al. 2022). However, no study to date has
438	specifically examined the functional significance of the spontaneous cerebral activations specific to SW-
439	SP coupling for human cognition. The results of this study revealed that when accounting for the
440	coupling status of spindles and slow waves, the brain areas associated with stable, trait-like cognitive
441	abilities differs, namely: 1) coupled SW-SP events recruited subcortical areas, which were positively
442	correlated with Reasoning abilities, 2) uncoupled spindles recruited cortical frontal areas, which showed
443	a negative correlation with Reasoning abilities, 3) uncoupled slow waves recruited the hippocampus,
444	the extent to which was also negatively correlated with Reasoning abilities. Furthermore, in addition to
445	Reasoning, 4) we also found mainly negative associations between Verbal abilities in frontal regions for
446	both SW-coupled and uncoupled spindles. Taken together, these results support the view that the co-
447	occurrence of spindles and slow waves is a functionally dissociable event from spindles on their own

448	(or, irrespective of slow wave coupling), and clarify that SW-SP coupling appears to be a key element
449	in the recruitment of cerebral substrates that support the previously identified relationship between
450	Reasoning abilities and sleep spindles.
451	Activation of the putamen was observed exclusively time-locked to SW-coupled spindles and
452	was positively correlated with Reasoning abilities. A similar pattern was observed for the thalamus.
453	Previous studies that did not consider spindle-slow wave coupling (Fang et al. 2019; Fang et al. 2020)
454	also observed a relationship between activation of these brain areas and Reasoning abilities. The
455	current study advances our understanding of this relationship, suggesting that spindle-slow wave
456	coupling is responsible for this association. Thus, suggesting that spindles in isolation may not be as
457	important as coupled events as a marker of human intellectual ability. Reasoning abilities require the
458	use of existing knowledge and experience to solve novel problems. Presumably, this requires
459	communication between subcortical areas where the new problem to solve is initially processed (van
460	den Berg et al. 2019; Berg et al. 2022) and cortical areas where existing knowledge resides (Prado et
461	al. 2011). According to the active systems consolidation hypothesis, SW-spindle complexes are an index
462	of the dialogue between subcortical and cortical regions (Born and Wilhelm 2012). Thus, the relationship
463	between SW-coupled spindles and Reasoning abilities may reflect the extent of the recruitment of
464	subcortical areas related to cognitive abilities, specifically during periods of enhanced subcortical-
465	cortical dialogue.

466	A different pattern of brain activation was observed for the relationship between cognitive abilities
467	and uncoupled events. We observed hippocampal activation time-locked to uncoupled slow waves,
468	which was negatively correlated with Reasoning abilities; this relationship was significantly stronger for
469	uncoupled slow waves as directly compared to coupled SW-SP events. Interestingly, while the
470	hippocampus is active during coupled SW-spindle events (Baena et al. 2022), we did not observe any
471	relationship with Reasoning abilities. This negative association is surprising as the hippocampus plays
472	an important role in cognitive functions like learning, spatial navigation, or memory (Muzzio et al. 2009;
473	O'Shea et al. 2016). However, there is ongoing debate about whether the hippocampus plays a
474	persistent role in mnemonic function, or whether its action is more crucial during the initial acquisition of
475	new knowledge (Klinzing et al. 2019). Thus, in the absence of new information to process, this negative
476	relationship may reflect a refractory process, but could turn positive if the night was preceded by a
477	heavily hippocampal-dependent cognitive task. Indeed, the hippocampus has been shown to be
478	increased during and soon after acquiring novel motor sequences and novel cognitive strategies
479	required for problem solving (Gheysen et al. 2010; Albouy et al. 2013), as well as declarative learning
480	(Eichenbaum 2004), and that with the passage of time, and especially an interval of sleep, in particular,
481	the recruitment of the hippocampus is reduced (Fogel et al. 2014; Jegou et al. 2019; van den Berg et
482	al. 2022).

483	Finally, mainly negative associations were observed between Verbal abilities in frontal regions
484	for SW-coupled while positive associations were observed for uncoupled spindles, which were generally
485	stronger associations for coupled SW-SP events vs. uncoupled events. Verbal IQ reflects the ability to
486	use and remember facts, figures, events, and places; <i>i.e.</i> , the use of previous, " <i>crystallized</i> " knowledge.
487	Our results suggest that coupled SW-SP complexes reflect the ability to utilize acquired skills or
488	knowledge. This interpretation is line with the active system consolidation hypothesis, whereby acquired
489	knowledge or skills are dependent on cortical brain regions (Klinzing et al. 2019).
490	There are several limitations worth mentioning in the present study. It was not possible to
491	subdivide spindles into slow spindles and fast spindles nor was it possible to subdivide spindles from
492	NREM2 and SWS due to the limited sleep duration and number of events recorded while participants
493	were sleeping in the MRI scanner. This challenge is inherent in all EEG-fMRI sleep studies. However,
494	there is no evidence to suggest that this would bias our results, as we have replicated and extended
495	upon previous results that looked at full bandwidth spindles (Fang et al. 2019). In addition, we did not
496	directly investigate any relationship between spindles, slow waves and SW-coupled spindles following
497	new learning; this would be important to disentangle the processes involved in the night-to-night
498	changes in brain activity that support memory consolidation, as compared to more trait-like
499	interindividual differences in intellectual abilities.

500	In summary, we investigated the functional significance of brain areas recruited during SW-
501	coupled spindles, uncoupled spindles, and uncoupled slow waves. The results of this study demonstrate
502	that subcortical areas (<i>i.e.</i> , the putamen and the thalamus) recruited during coupled SW-SP events were
503	the only ones positively correlated with Reasoning abilities. For the first time, we provide direct evidence
504	that the relationship between Reasoning abilities and sleep spindles depends on spindle coupling status.
505	In addition, the negative association between cognitive abilities and hippocampal activation time-locked
506	to uncoupled SWs might indicate a refractory mechanism in the absence of new, intensive hippocampal-
507	dependent memory processing. Future studies linking coupling-driven activation with consolidation of
508	recent memories are needed to further elucidate the dissociable contribution of isolated spindles,
509	isolated slow waves and SW-SP complexes.

510

515

Funding

511	This research was funded by a Canada Excellence Research Chair Grant (#215063 to A.M.O);
512	The Natural Sciences and Engineering Research Council (NSERC) Discovery grant (RGPIN/2017-
513	04328 to S.F.); Ministry of Research and Innovation Early Researcher Award (ERA; ER17–13-023 to
514	S.F.).

Acknowledgments

516	Reprint requests should be sent to Stuart M. Fogel, Institute for Mental Health Research,
517	University of Ottawa, Ottawa, ON, Canada, or via e-mail: sfogel@uottawa.ca.
518	References
519	
520	Albouy G, Fogel SM, King BR, Laventure S, Benali H, Karni A, Carrier J, Robertson EM, Doyon J.
521	2015. Maintaining vs. enhancing motor sequence memories: Respective roles of striatal and
522	hippocampal systems. NeuroImage. 108:423–434. doi:10.1016/j.neuroimage.2014.12.049.
523	Albouy G, King BR, Maquet P, Doyon J. 2013. Hippocampus and striatum: Dynamics and interaction
524	during acquisition and sleep-related motor sequence memory consolidation. Hippocampus.
525	23(11):985–1004. doi:10.1002/hipo.22183.
526	Allen PJ, Josephs O, Turner R. 2000. A method for removing imaging artifact from continuous EEG
527	recorded during functional MRI. Neuroimage. 12(2):230–239. doi:10.1006/nimg.2000.0599.
528	Allen PJ, Polizzi G, Krakow K, Fish DR, Lemieux L. 1998. Identification of EEG events in the MR
529	scanner: the problem of pulse artifact and a method for its subtraction. NeuroImage. 8(3):229–239.
530	doi:10.1006/nimg.1998.0361.
531	Andrade KC, Spoormaker VI, Dresler M, Wehrle R, Holsboer F, Sämann PG, Czisch M. 2011.
532	Behavioral/Systems/Cognitive Sleep Spindles and Hippocampal Functional Connectivity in Human
533	NREM Sleep. J Neurosci. 31(28):10331–10339. doi:10.1523/JNEUROSCI.5660-10.2011.
534	Baddeley AD. 1968. A 3 min reasoning test based on grammatical transformation. Psychon Sci.
535	10(10):341–342.
536	Baena D, Fang Z, Gibbings A, Smith D, Ray L, Doyon J, Owen AM, Fogel SM. 2022. Cerebral
537	activation differences between slow wave-coupled and uncoupled spindles. OHBM 2022 Annual
538	Meeting, Glasgow.
539	Beck AT, Epstein N, Brown G, Steer RA. 1988. An inventory for measuring clinical anxiety:
540	psychometric properties. J Consult Clin Psychol. 56(6):893–897. doi:10.1037//0022-006x.56.6.893.
541	Beck AT, Steer RA, Carbin MG. 1988. Psychometric properties of the Beck Depression Inventory:
542	Twenty-five years of evaluation. Clin Psychol Rev. 8(1):77–100. doi:10.1016/0272-7358(88)90050-5.

Berens P. 2009. CircStat: A MATLAB Toolbox for Circular Statistics. J Stat Softw. 31(10):1–21.
doi:10.18637/JSS.V031.I10.

Berg van den, Al-Kuwatli J, Paulin J, Ray LB, Owen AM, Fogel SM. 2019. Sleep preferentially
enhances memory for a cognitive strategy but not the implicit motor skills used to acquire it. Neurobiol

547 Learn Mem. 161:135–142. doi:10.1016/j.nlm.2019.04.005.

Berg van den, Pozzobon A, Fang Z, Al-Kuwatli J, Toor B, Ray LB, Fogel SM. 2022. Sleep Enhances
Consolidation of Memory Traces for Complex Problem-Solving Skills. Cereb Cortex. 32(4):653–667.
doi:10.1093/CERCOR/BHAB216.

Bergmann TO, Born J. 2018. Phase-amplitude coupling: A general mechanism for memory processing
and synaptic plasticity? Neuron. 97(1):10–13. doi:10.1016/J.NEURON.2017.12.023.

Bersagliere A, Achermann P. 2010. Slow oscillations in human non-rapid eye movement sleep
electroencephalogram: effects of increased sleep pressure. J Sleep Res. 19(1p2):228–237.
doi:10.1111/j.1365-2869.2009.00775.x.

Bódizs R, Kis T, Lázár AS, Havrán L, Rigó P, Clemens Z, Halász P. 2005. Prediction of general
mental ability based on neural oscillation measures of sleep. J Sleep Res. 14(3):285–292.
doi:10.1111/j.1365-2869.2005.00472.x.

559 Bódizs R, Lázár AS, Rigó P. 2008. Correlation of visuospatial memory ability with right parietal EEG 560 spindling during sleep. Acta Physiol Hung. 95(3):297–306. doi:10.1556/APhysiol.95.2008.3.5.

Born J, Wilhelm I. 2012. System consolidation of memory during sleep. Psychol Res. 76(2):192–203.
doi:10.1007/s00426-011-0335-6.

563 Branger P, Arenaza-Urquijo EM, Tomadesso C, Mézenge F, André C, de Flores R, Mutlu J, de La

564 Sayette V, Eustache F, Chételat G, et al. 2016. Relationships between sleep quality and brain volume,

565 metabolism, and amyloid deposition in late adulthood. Neurobiol Aging. 41:107–114.

566 doi:10.1016/j.neurobiolaging.2016.02.009.

567 Brewer-Deluce D, Wilson TD, Owen AM. Cognitive Function in Varsity Football Athletes is Maintained

in the Absence of Concussion. FASEB J. 31:745.7-745.7.

569 doi:10.1096/FASEBJ.31.1_SUPPLEMENT.745.7.

- 570 Caporro M, Haneef Z, Yeh HJ, Lenartowicz A, Buttinelli C, Parvizi J, Stern JM. 2012. Functional MRI
- 571 of sleep spindles and K-complexes. Clin Neurophysiol. 123(2):303–309.
- 572 doi:10.1016/J.CLINPH.2011.06.018.
- 573 Casey BJ, Tottenham N, Liston C, Durston S. 2005. Imaging the developing brain: what have we
- learned about cognitive development? Trends Cogn Sci. 9(3):104–110. doi:10.1016/j.tics.2005.01.011.
- 575 Cattell RB. 1940. A culture-free intelligence test. J Educ Psychol. 31(3):161–179.576 doi:10.1037/h0059043.
- 577 Cattell RB. 1963. Theory of fluid and crystallized intelligence: A critical experiment. J Educ Psychol.
 578 54(1):1–22.
- 579 Collins P, Roberts AC, Dias R, Everitt BJ, Robbins TW. 1998. Perseveration and Strategy in a Novel

580 Spatial Self-Ordered Sequencing Task for Nonhuman Primates: Effects of Excitotoxic Lesions and

581 Dopamine Depletions of the Prefrontal Cortex. J Cogn Neurosci. 10(3):332–354.

- 582 doi:10.1162/089892998562771.
- 583 Corsi P. 1973. Human memory and the medial temporal region of the brain. Diss Abstr Int. 34(2-584 B):891.
- 585 Delorme A, Makeig S. 2004. EEGLAB: An open source toolbox for analysis of single-trial EEG
- dynamics including independent component analysis. J Neurosci Methods. 134(1):9–21.
 doi:10.1016/j.jneumeth.2003.10.009.
- Douglass AB, Bornstein RF, Nino-Murcia G, Keenan S, Miles L, Zarcone VP, Guilleminault C, Dement
 WC, Jr VPZ, Guilleminault C, et al. 1994. The Sleep Disorders Questionnaire. I: Creation and
 multivariate structure of SDQ. Sleep. 17(2):160. doi:10.1093/sleep/17.2.160.
- Eichenbaum H. 2004. Hippocampus: Cognitive Processes and Neural Representations that Underlie
 Declarative Memory. Neuron. 44(1):109–120. doi:10.1016/j.neuron.2004.08.028.
- 593 Fang Z, Ray LBB, Owen AMM, Fogel SM. 2019. Brain Activation Time-Locked to Sleep Spindles
- Associated With Human Cognitive Abilities. Front Neurosci. 13(FEB):46.
- 595 doi:10.3389/fnins.2019.00046.
- 596 Fang Z, Ray LBBLB, Houldin E, Smith D, Owen AMAMM, Fogel SM. 2020. Sleep Spindle-dependent
- 597 Functional Connectivity Correlates with Cognitive Abilities. J Cogn Neurosci. 32(3):446–466.
- 598 doi:10.1162/jocn_a_01488.

- 599 Fang Z, Sergeeva V, Ray LB, Viczko J, Owen AM, Fogel SM. 2017. Sleep spindles and intellectual
- ability: Epiphenomenon or directly related? J Cogn Neurosci. 29(1):167–182.
- 601 doi:10.1162/jocn_a_01034.
- Fang Z, Smith DM, Houldin E, Ray L, Owen AM, Fogel SM. 2021. The relationship between cognitive
- ability and BOLD activation across sleep–wake states. Brain Imaging Behav.(0123456789).
 doi:10.1007/s11682-021-00504-w.
- Fogel S, Albouy G, King BR, Lungu O, Vien C, Bore A, Pinsard B, Benali H, Carrier J, Doyon J. 2017.
 Reactivation or transformation? Motor memory consolidation associated with cerebral activation timelocked to sleep spindles. PLOS ONE. 12(4):e0174755. doi:10.1371/JOURNAL.PONE.0174755.
- Fogel S, Nader R, Cote K, Smith C. 2007. Sleep spindles and learning potential. Behav Neurosci.
 121(1):1–10. doi:10.1037/0735-7044.121.1.1.
- 610 Fogel S, Smith C. 2011. The function of the sleep spindle: A physiological index of intelligence and a
- 611 mechanism for sleep-dependent memory consolidation. Neurosci Biobehav Rev. 35(5):1154–1165.
 612 doi:10.1016/j.neubiorev.2010.12.003.
- Fogel SM, Albouy G, King BR, Vien C, Karni A, Benali H, Maquet P, Carrier J, Doyon J. 2014. Motor
 memory consolidation depends upon reactivation driven by the action of sleep spindles. J Sleep Res.
 23(s1):47. doi:DOI: 10.1111/jsr.12213.
- Fogel SM, Smith CT. 2006. Learning-dependent changes in sleep spindles and Stage 2 sleep. J Sleep
 Res. 15(3):250–255. doi:10.1111/j.1365-2869.2006.00522.x.
- Fogel SM, Vien C, Karni A, Benali H, Carrier J, Doyon J, Albouy G. 2017. Sleep spindles: A
- 619 physiological marker of age-related changes in grey matter in brain regions supporting motor skill
- memory consolidation. Neurobiol Aging. 49:154–164. doi:10.1016/j.neurobiolaging.2016.10.009.
- Folstein MF, Folstein SE, McHugh PR. 1975. "Mini-mental state". A practical method for grading the
 cognitive state of patients for the clinician. J Psychiatr Res. 12(3):189–198. doi:10.1016/00223956(75)90026-6.
- Friston KJ, Williams S, Howard R, Frackowiak RSJ, Turner R. 1996. Movement-Related effects in
 fMRI time-series. Magn Reson Med. 35(3):346–355. doi:10.1002/MRM.1910350312.
- 626 Gaillard JM, Blois R. 1981. Spindle density in sleep of normal subjects. Sleep. 4(4):385.

- 627 Gennaro LD, Ferrara M, Vecchio, Curcio G, Bertini M. 2005. An electroencephalographic fingerprint of
- 628 human sleep. Neuroimage. 26(1):114–122. doi:S1053-8119(05)00049-2 [pii]
- 629 10.1016/j.neuroimage.2005.01.020.
- 630 Gheysen F, Opstal FV, Roggeman C, Waelvelde HV, Fias W. 2010. Hippocampal contribution to early
- and later stages of implicit motor sequence learning. Exp Brain Res. 202(4):795–807.
- 632 doi:10.1007/s00221-010-2186-6.
- Gould RL, Brown RG, Owen AM, Bullmore ET, Howard RJ. 2006. Task-induced deactivations during
 successful paired associates learning: an effect of age but not Alzheimer's disease. NeuroImage.
 31(2):818–31.
- Hampshire A, Highfield RR, Parkin BL, Owen AM. 2012. Fractionating human intelligence. Neuron.
 76(6):1225–1237. doi:10.1016/j.neuron.2012.06.022.
- 638 Helfrich RF, Lendner JD, Mander BA, Guillen H, Paff M, Mnatsakanyan L, Vadera S, Walker MP, Lin
- JJ, Knight RT. 2019. Bidirectional prefrontal-hippocampal dynamics organize information transfer
- 640 during sleep in humans. Nat Commun. 10(1):3572. doi:10.1038/s41467-019-11444-x.
- 641 Helfrich RF, Mander BA, Jagust WJ, Knight RT, Walker M. 2018. Old brains come uncoupled in sleep:
- 642 Slow wave-spindle synchrony, brain atrophy, and forgetting. Neuron. 97(1):221–230.
- 643 doi:10.1016/J.NEURON.2017.11.020.
- Iber C, Ancoli-Israel S, Chesson AL, Quan SF. 2007. The AASM manual for the scoring of sleep and
 associated events: rules, terminology and technical specifications. 1st ed. American Academy of
 Sleep Medicine, Westchester, IL.
- Inoue S, Matsuzawa T. 2007. Working memory of numerals in chimpanzees. Curr Biol.
 17(23):R1004—-R1005.
- 649 Jegou A, Schabus M, Gosseries O, Dahmen B, Albouy G, Desseilles M, Sterpenich V, Phillips C,
- 650 Maquet P, Grova C, et al. 2019. Cortical reactivations during sleep spindles following declarative
- 651 learning. NeuroImage. 195:104–112. doi:10.1016/j.neuroimage.2019.03.051.
- Klinzing JG, Niethard N, Born J. 2019. Mechanisms of systems memory consolidation during sleep.
 Nat Neurosci. 22(10):1598–1610. doi:10.1038/s41593-019-0467-3.

054	Les 6 LL Malles MO Les d'TE 2007 (Decise et les contractions de les contractions)
654	Laufs H, Walker MC, Lund TE. 2007. 'Brain activation and hypothalamic functional connectivity during
655	human non-rapid eye movement sleep: An EEG/fMRI study'-its limitations and an alternative
656	approach. Brain J Neurol. 130(7):e75–e75. doi:10.1093/brain/awm084.
657	Laventure S, Pinsard B, Lungu O, Carrier J, Fogel SM, Benali H, Lina J-MM, Boutin A, Doyon J. 2018.
658	Beyond spindles: interactions between sleep spindles and boundary frequencies during cued
659	reactivation of motor memory representations. Sleep. 41(9):1–14. doi:10.1093/sleep/zsy142.
660	Lenhard W, Lenhard A. 2014. Testing the Significance of Correlations.
661	doi:10.13140/RG.2.1.2954.1367.
662	Maingret N, Girardeau G, Todorova R, Goutierre M, Zugaro M. 2016. Hippocampo-cortical coupling
663	mediates memory consolidation during sleep. Nat Neurosci. 19(7):959–966. doi:10.1038/nn.4304.
664	Mantini D, Perrucci MG, Cugini S, Ferretti A, Romani GL, Gratta CD. 2007. Complete artifact removal
665	for EEG recorded during continuous fMRI using independent component analysis. Neuroimage.
666	34(2):598–607. doi:10.1016/j.neuroimage.2006.09.037.
667	Mölle M, Bergmann TO, Marshall L, Born J. 2011. Fast and Slow Spindles during the Sleep Slow

668 Oscillation: Disparate Coalescence and Engagement in Memory Processing. Sleep. 34(10):1411–

669 1421. doi:10.5665/SLEEP.1290.

Mulert C, Lemieux L. 2010. EEG-fMRI: Physiological Basis, Technique and Applications. illustrate ed.Springer.

672 Mullinger KJ, Yan WX, Bowtell R. 2011. Reducing the gradient artefact in simultaneous EEG-fMRI by

adjusting the subject's axial position. NeuroImage. 54(3):1942–1950.

- 674 doi:10.1016/j.neuroimage.2010.09.079.
- 675 Muzzio IA, Kentros C, Kandel E. 2009. What is remembered? Role of attention on the encoding and
- 676 retrieval of hippocampal representations. J Physiol. 587(12):2837–2854.
- 677 doi:10.1113/JPHYSIOL.2009.172445.
- Nader R, Smith C. 2009 Sep. A Role For Stage 2 Sleep in Memory Processing. Sleep Brain Plast.:87–
 98. doi:10.1093/ACPROF:OSO/9780198574002.003.0005.

Ngo H. V., J F, B S, Ngo Hong Viet, Fell J, Staresina B. 2020. Sleep spindles mediate hippocampal neocortical coupling during long-duration ripples. eLife. 9:1–18. doi:10.7554/ELIFE.57011.

O'Shea A, Cohen RA, Porges EC, Nissim NR, Woods AJ. 2016. Cognitive aging and the hippocampus
in older adults. Front Aging Neurosci. 8(DEC):298. doi:10.3389/FNAGI.2016.00298/BIBTEX.

684 Prado J, Chadha A, Booth JR. 2011. The Brain Network for Deductive Reasoning: A Quantitative

685 Meta-analysis of 28 Neuroimaging Studies. J Cogn Neurosci. 23(11):3483.

686 doi:10.1162/JOCN_A_00063.

Ray LB, Sockeel S, Soon M, Bore A, Myhr A, Stojanoski B, Cusack R, Owen AM, Doyon J, Fogel SM.

688 2015. Expert and crowd-sourced validation of an individualized sleep spindle detection method
689 employing complex demodulation and individualized normalization. Front Hum Neurosci. 9(9).

690 doi:10.3389/fnhum.2015.00507.

Saletin JM, Helm E van der, Walker M. 2013. Structural brain correlates of human sleep oscillations.
NeuroImage. 83(C):658–668. doi:10.1016/j.neuroimage.2013.06.021.

Sandman CA, Head K, Muftuler LT, Su L, Buss C, Poggi E. 2014. NeuroImage Shape of the basal
ganglia in preadolescent children is associated with cognitive performance. NeuroImage. 99:93–102.
doi:10.1016/j.neuroimage.2014.05.020.

Schabus M, Dang-Vu TT, Albouy G, Balteau E, Boly M, Carrier J, Darsaud A, Degueldre C, Desseilles
M, Gais S, et al. 2007. Hemodynamic cerebral correlates of sleep spindles during human non-rapid
eye movement sleep. Proc Natl Acad Sci. 104(32):13164–13169. doi:10.1073/PNAS.0703084104.

699 Schabus M, Hödlmoser K, Gruber G, Sauter C, Anderer P, Klösch G, Parapatics S, Saletu B,

700 Klimesch W, Zeitlhofer J. 2006. Sleep spindle-related activity in the human EEG and its relation to

general cognitive and learning abilities. Eur J Neurosci. 23(7):1738–1746. doi:10.1111/j.1460-

702 9568.2006.04694.x.

703 Shallice T. 1982. Specific impairments of planning. Philos Trans R Soc Lond.:199–209.

Silverman I, Choi J, Mackewn A. 2000. Evolved mechanisms underlying wayfinding: Further studies
on the hunter-gatherer theory of spatial sex differences. Evol Hum Behav. 21(3):201–213.

Silverstein LD, Levy CM. 1976. The stability of the sigma sleep spindle. Electroencephalogr Clin
 Neurophysiol. 40(6):666–670.

Smith D, Fang Z, Thompson K, Fogel SM. 2020. Sleep and individual differences in intellectual
abilities. Curr Opin Behav Sci. 33:126–131. doi:10.1016/j.cobeha.2020.02.011.

- 710 Srivastava G, Crottaz-Herbette S, Lau KM, Glover GH, Menon V. 2005. ICA-based procedures for
- removing ballistocardiogram artifacts from EEG data acquired in the MRI scanner. NeuroImage.
- 712 24(1):50–60. doi:10.1016/j.neuroimage.2004.09.041.
- Stroop JR. 1935. Studies of interference in serial verbal reactions. J Exp Psychol. 18(6):643–662.
 doi:10.1037/h0054651.
- Treisman AM, Gelade G. 1980. A feature-integration theory of attention. Cognit Psychol. 12(1):97–
 136.
- 717 Tyvaert L, LeVan P, Grova C, Dubeau F, Gotman J. 2008. Effects of fluctuating physiological rhythms
- during prolonged EEG-fMRI studies. Clin Neurophysiol. 119(12):2762–2774.
- 719 doi:10.1016/j.clinph.2008.07.284.
- Ujma, Konrad, Genzel, Bleifuss, Simor, Pótári A, Körmendi J, Gombos F, Steiger A, Bódizs R, et al.
- 2014. Sleep spindles and intelligence: Evidence for a sexual dimorphism. J Neurosci. 34(49):16358–
 16368. doi:10.1523/JNEUROSCI.1857-14.2014.
- Ujma PP, Bódizs R, Gombos F, Stintzing J, Konrad BN, Genzel L, Steiger A, Dresler M. 2015. Nap
 sleep spindle correlates of intelligence. Sci Rep. 5:17159. doi:10.1038/srep17159.
- 725 Wechsler DA. 1981. Wechsler Adult Intelligence Scale–Revised. N Y Psychol Corp.
- 726 Wild CJ, Nichols ES, Battista ME, Stojanoski B, Owen AM. 2018. Dissociable effects of self-reported
- daily sleep duration on high-level cognitive abilities. Sleep. 41(12). doi:10.1093/sleep/zsy182.

Reas

Table 1. Descriptive statistics of the three CBS subscales (Reasoning, STM, and Verbal abilities).

IQ measures	Range	Mean ± SD	Median
Reasoning	78.84-108.17	95.51 ± 7.30	96.40
STM	84.38-115.33	101.65 ± 6.88	102.40
Verbal	88.51-110.92	99.60 ± 5.20	99.52

Table 2. Sleep architecture during EEG-fMRI recording session.

	-		
	N	М	SD
Wake (min)	25	26.60	20.60
NREM1 (min)	25	5.63	4.34
NREM2 (min)	28	24.32	14.56
SWS (min)	20	14.77	17.17
NREM (min)	28	39.90	19.40
REM (min)	8	17.80	10.76
Total sleep (min)	28	44.98	23.90
Sleep latency (min)	28	7.71	10.00
NREM = non-rapid eye movement;	SWS = slow wave sle	ep; REM = rapid eye r	novement.

Table 3. Sleep spindle parameters for coupled SW-SP and uncoupled spindles during NREM sleep from EEGfMRI recording sessions.

Coupled SW-SP		Uncoupled	spindles		
М	SEM	М	SEM	T-statistic	P-value
215.64	45.90	264.43	76.23	-0.56	0.580
0.70	0.02	0.70	0.02	-0.16	0.870
34.43	1.82	29.10	1.63	3.61	0.001
3.92	0.65	4.74	1.00	-0.66	0.510
	M 215.64 0.70 34.43	M SEM 215.64 45.90 0.70 0.02 34.43 1.82	M SEM M 215.64 45.90 264.43 0.70 0.02 0.70 34.43 1.82 29.10	M SEM M SEM 215.64 45.90 264.43 76.23 0.70 0.02 0.70 0.02 34.43 1.82 29.10 1.63	MSEMMSEMT-statistic215.6445.90264.4376.23-0.560.700.020.700.02-0.1634.431.8229.101.633.61

M = mean; SEM = standard error of the mean. *P*-values for paired samples t-test between spindle parameters.

Cerebral Cortex

739 Figure 1. Study Design. Participants underwent an initial screening to rule out any signs of sleep 740 disorders, unusual sleep habits, or other health-related criteria and MRI compatibility. Eligible 741 participants then visited the sleep laboratory for the orientation session at least one week before the 742 EEG-fMRI sleep recording night, in which participants were given detailed instructions about the study 743 procedure, the sleep diary, and an activity monitor. Participants completed the CBS tests online and 744 kept a regular sleep-wake cycle for at least 1 week prior to the sleep recording. Compliance with this 745 schedule was assessed using both sleep diaries and wrist actigraphy. Finally, participants completed 746 the EEG-fMRI sleep recording session beginning at 21:00 h, with lights out for the sleep session at 747 22:00 h. The sleep session ended by midnight (24:00 h).

748

Figure 2. **A:** Coupled slow wave – spindle histogram for all participants. Each bar represents the number of coupled spindles detected in an interval of 200 ms divided by the total number of spindles. Average slow wave osciallation for all participants is superimposed In black. **B:** Circular plot of preferred phase for each individual (slow wave phase at spindle amplitude maximum). Grey dots denote an individual preferred phase (0° slow wave down-to-up state, ±180° slow wave up-to-down state). The direction of the line indicates the preferred direction of the grand average. Most individuals exhibit spindles adjacent to, or immediately following the positive slow wave peak at 0°.

Figure 3. Associations between Reasoning abilities and cerebral activation in (A) bilateral putamen;
(B) bilateral thalamus; (C) bilateral hippocampus; (D) prefrontal cortex (PFC).

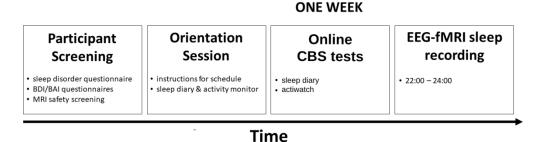


Figure 1. Study Design. Participants underwent an initial screening to rule out any signs of sleep disorders, unusual sleep habits, or other health-related criteria and MRI compatibility. Eligible participants then visited the sleep laboratory for the orientation session at least one week before the EEG-fMRI sleep recording night, in which participants were given detailed instructions about the study procedure, the sleep diary, and an activity monitor. Participants completed the CBS tests online and kept a regular sleep-wake cycle for at least 1 week prior to the sleep recording. Compliance with this schedule was assessed using both sleep diaries and wrist actigraphy. Finally, participants completed the EEG-fMRI sleep recording session beginning at 21:00 h, with lights out for the sleep session at 22:00 h. The sleep session ended by midnight (24:00 h).

375x128mm (96 x 96 DPI)

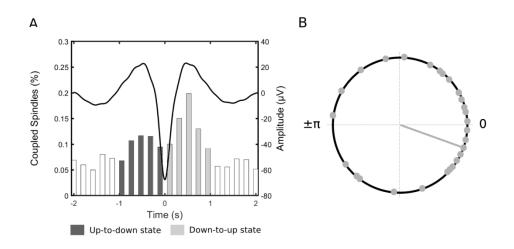


Figure 2. A: Coupled slow wave – spindle histogram for all participants. Each bar represents the number of coupled spindles detected in an interval of 200 ms divided by the total number of spindles. Average slow wave osciallation for all participants is superimposed In black. B: Circular plot of preferred phase for each individual (slow wave phase at spindle amplitude maximum). Grey dots denote an individual preferred phase (00 slow wave down-to-up state, ±1800 slow wave up-to-down state). The direction of the line indicates the preferred direction of the grand average. Most individuals exhibit spindles adjacent to, or immediately following the positive slow wave peak at 00.

383x198mm (96 x 96 DPI)

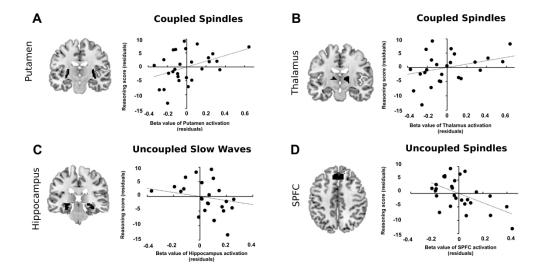


Figure 3. Associations between Reasoning abilities and cerebral activation in (A) bilateral putamen; (B) bilateral thalamus; (C) bilateral hippocampus; (D) prefrontal cortex (PFC).

694x351mm (300 x 300 DPI)

7	3	8
_	~	~

Supplemental Tables

	Overall re	gression effects			
Region	Event type	F (4, 23)	R ²	p-	value
	Coupled SW-SP	2.49	0.30		0.072
Putamen	Uncoupled spindle	0.08	0.01		0.987
	Uncoupled slow wave	1.13	0.16		0.369
	Partia	l coefficients			
Subtest	Event type	t (23)	partial r	p-	value
	Coupled SW-SP	2.19	0.42		0.039*
Reasoning	Uncoupled spindle	-0.15	-0.03		0.885
	Uncoupled slow wave	1.58	0.31		0.128
	Coupled SW-SP	-0.03	-0.01		0.978
Verbal	Uncoupled spindle	0.28	0.06		0.781
	Uncoupled slow wave	-1.58	-0.31		0.128
	Coupled SW-SP	-1.15	-0.23		0.262
STM	Uncoupled spindle	0.34	0.07		0.737
	Uncoupled slow wave	1.02	0.21		0.317
Follow-up comparisons of partial correlation coefficients					
Subtest	Event type 1	Event type 2		z	p-value
Reasoning	Coupled SW-SP	Uncoupled spind	е	-1.92	0.027*
	Coupled SW-SP	Uncoupled slow v	wave	1.29	0.099

Overall regression effects					
Region	Event type	F (4, 23)	R ²	р·	value
	Coupled SW-SP	1.28	0.18		0.305
Thalamus	Uncoupled spindle	1.38	0.19		0.274
	Uncoupled slow wave	0.72	0.11		0.586
	Partia	l coefficients			
Subtest	Event type	t (23)	partial r	p	value
	Coupled SW-SP	2.15	0.41		0.042*
Reasoning	Uncoupled spindle	1.03	0.21		0.313
	Uncoupled slow wave	1.41	0.28		0.172
	Coupled SW-SP	-1.49	-0.30		0.149
Verbal	Uncoupled spindle	-0.28	-0.06		0.785
	Uncoupled slow wave	-0.68	-0.14		0.506
	Coupled SW-SP	-0.38	-0.08		0.709
STM	Uncoupled spindle	0.54	0.11		0.598
	Uncoupled slow wave	0.23	0.05		0.818
Follow-up comparisons of partial correlation coefficients					
Subtest	Event type 1	Event type 2		z	p-value
Decemina	Coupled SW-SP	Uncoupled spindle	Э	-1.03	0.151
Reasoning	Coupled SW-SP	Uncoupled slow w	/ave	2.39	0.008*

Table S2. Regression:	Thalamus activation & cognitive abilities

741

Table S3. Regression: Hippocampus activation & cognitive abilities

	Overall regression effects				
Region	Event type	F (4, 23)	R ²		p-value
	Coupled spindle	2.31	0.29		0.089
Hippocampus	Uncoupled spindle	1.19	0.17		0.340
	Uncoupled slow wave	1.23	0.18		0.327
	Parti	al coefficients			
Subtest	Event type	t (23)	partial r		p-value
	Coupled SW-SP	-0.99	-0.20		0.333
Reasoning	Uncoupled spindle	0.41	0.09		0.685
	Uncoupled slow wave	-2.18	-0.41		0.040*
	Coupled SW-SP	1.90	0.37		0.070
Verbal	Uncoupled spindle	-0.06	-0.01		0.955
	Uncoupled slow wave	1.40	0.28		0.174
	Coupled SW-SP	0.19	0.04		0.854
STM	Uncoupled spindle	1.62	0.32		0.120
	Uncoupled slow wave	-0.08	-0.02		0.939
Follow-up comparisons of partial correlation coefficients					
Subtest	Event type 1	Event type 2		z	p-value
Reasoning	Coupled SW-SP	Uncoupled slow w	ave	3.11	0.001*

	Overall re	gression effects			
Region	Event type	F (4, 23)	R ²	p-	value
	Coupled SW-SP	2.35	0.29		0.084
SPFC	Uncoupled spindle	3.69	0.39		0.018*
	Uncoupled slow wave	0.13	0.02		0.970
	Partia	l coefficients			
Subtest	Event type	t (23)	partial r	p-	value
	Coupled SW-SP	0.23	0.05		0.822
Reasoning	Uncoupled spindle	-3.09	-0.54		0.005*
	Uncoupled slow wave	0.16	0.03		0.873
	Coupled SW-SP	-2.53	-0.47		0.019*
Verbal	Uncoupled spindle	2.24	0.42		0.035*
	Uncoupled slow wave	-0.25	-0.05		0.809
	Coupled SW-SP	0.77	0.16		0.451
STM	Uncoupled spindle	1.43	0.29		0.167
	Uncoupled slow wave	-0.46	-0.10		0.648
Fo	ollow-up comparisons o	of partial correlation	n coefficie	ents	
Subtest	Event type 1	Event type 2	:	z	p-value
Reasoning	Coupled SW-SP	Uncoupled spindle	ə -	1.82	0.035*
Varbal	Coupled SW-SP	Uncoupled spindle	Э	1.87	0.030*
Verbal	Coupled SW-SP	Uncoupled slow w	ave	3.56	>0.001*

	Table S4. Regression:	PFC activation & cognitive abilities
--	-----------------------	--------------------------------------

	Overall re	gression effects			
Region	Event type	F (4, 23)	R ²	p-	value
ACC	Coupled SW-SP	2.48	0.30		0.072
	Uncoupled spindle	3.07	0.35		0.036*
	Uncoupled slow wave	1.26	0.18		0.314
	Partia	l coefficients			
Subtest	Event type	t (23)	partial r	p-	value
	Coupled SW-SP	0.99	0.20		0.335
Reasoning	Uncoupled spindle	0.34	0.07		0.739
	Uncoupled slow wave	-0.15	-0.03		0.884
Verbal	Coupled SW-SP	-2.78	-0.50		0.011*
	Uncoupled spindle	1.54	0.31		0.139
	Uncoupled slow wave	-1.40	-0.28		0.174
	Coupled SW-SP	0.37	0.08		0.714
STM	Uncoupled spindle	0.40	0.08		0.690
	Uncoupled slow wave	-0.32	-0.07		0.750
Follow-up comparisons of partial correlation coefficients					
Subtest	Event type 1	Event type 2		Z	p-value
Verbal	Coupled SW-SP	Uncoupled spind	le	0.56	0.287
	Coupled SW-SP	Uncoupled slow	wave	5.07	>0.001*

Table S5. Regression: ACC activation & cognitive abilitie

Overall regression effects					
Region	Event type	F (4, 23)	R ²	p-	value
MCC	Coupled SW-SP	1.28	0.18		0.308
	Uncoupled spindle	0.99	0.15		0.435
	Uncoupled slow wave	0.96	0.14		0.450
	Partia	l coefficients			
Subtest	Event type	t (23)	partial r	p-	value
	Coupled SW-SP	1.345	0.27		0.192
Reasoning	Uncoupled spindle	0.58	0.12		0.567
	Uncoupled slow wave	-0.42	-0.09		0.677
	Coupled SW-SP	-2.22	-0.42		0.036*
Verbal	Uncoupled spindle	0.88	0.18		0.388
	Uncoupled slow wave	-0.64	-0.13		0.531
	Coupled SW-SP	0.93	0.19		0.363
STM	Uncoupled spindle	-1.82	-0.35		0.082
	Uncoupled slow wave	0.69	0.14		0.496
Follow-up comparisons of partial correlation coefficients					
Subtest	Event type 1	Event type 2		z	p-value
Verbal	Coupled SW-SP	Uncoupled spind	le	1.54	0.062
	Coupled SW-SP	Uncoupled slow	wave	3.39	>0.001*

	Table S6. Regression	n: MCC activation & cognitive abilities	ities
--	----------------------	---	-------

748

	Overall re	gression effects				
Region	Event type	F (4, 23)	F (4, 23) R ²		p-value	
	Coupled SW-SP	1.53	0.21		0.226	
MFG	Uncoupled spindle	1.34	0.19		0.285	
	Uncoupled slow wave	4.66	0.45		0.007*	
Partial coefficients						
Subtest	Event type	t (23) partial r p-		value		
Reasoning	Coupled SW-SP	0.47	0.10		0.643	
	Uncoupled spindle	0.23	0.05		0.822	
	Uncoupled slow wave	-0.27	-0.06		0.788	
Verbal	Coupled SW-SP	-2.11	-0.40		0.046*	
	Uncoupled spindle	0.23	0.05		0.818	
	Uncoupled slow wave	-3.26	-0.56		0.003*	
STM	Coupled SW-SP	0.88	0.18		0.390	
	Uncoupled spindle	-2.15	-0.41		0.042*	
	Uncoupled slow wave	1.38	0.28		0.180	
Follow-up comparisons of partial correlation coefficients						
Subtest	Event type 1	Event type 2		z	p-value	
Varbal	Coupled SW-SP	Uncoupled spindle		2.43	0.007*	
Verbal	Coupled SW-SP	Uncoupled slow wave		3.79	>0.001*	
STM	Coupled SW-SP	Uncoupled spindle 2.65		2.65	0.004*	

-			o
Table S7	. Regression: MFG	activation a	& cognitive abilities